Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Pediatr Res ; 89(1): 157-162, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32283547

RESUMO

BACKGROUND: Autosomal recessive polycystic kidney disease (ARPKD) is a rare but potentially lethal genetic disorder typically characterized by diffuse renal microcysts. Clinical trials for patients with ARPKD are not currently possible due to the absence of sensitive measures of ARPKD kidney disease progression and/or therapeutic efficacy. METHODS: In this study, animal and human magnetic resonance imaging (MRI) scanners were used to obtain quantitative kidney T1 and T2 relaxation time maps for both excised kidneys from bpk and wild-type (WT) mice as well as for a pediatric patient with ARPKD and a healthy adult volunteer. RESULTS: Mean kidney T1 and T2 relaxation times showed significant increases with age (p < 0.05) as well as significant increases in comparison to WT mice (p < 2 × 10-10). Significant or nearly significant linear correlations were observed for mean kidney T1 (p = 0.030) and T2 (p = 0.054) as a function of total kidney volume, respectively. Initial magnetic resonance fingerprinting assessments in a patient with ARPKD showed visible increases in both kidney T1 and T2 in comparison to the healthy volunteer. CONCLUSIONS: These preclinical and initial clinical MRI studies suggest that renal T1 and T2 relaxometry may provide an additional outcome measure to assess cystic kidney disease progression in patients with ARPKD. IMPACT: A major roadblock for implementing clinical trials in patients with ARPKD is the absence of sensitive measures of ARPKD kidney disease progression and/or therapeutic efficacy. A clinical need exists to develop a safe and sensitive measure for kidney disease progression, and eventually therapeutic efficacy, for patients with ARPKD. Mean kidney T1 and T2 MRI relaxation times showed significant increases with age (p < 0.05) as well as significant increases in comparison to WT mice (p < 2 ×10-10), indicating that T1 and T2 may provide sensitive assessments of cystic changes associated with progressive ARPKD kidney disease. This preclinical and initial clinical study suggests that MRI-based kidney T1 and T2 mapping could be used as a non-invasive assessment of ARPKD kidney disease progression. These non-invasive, quantitative MRI techniques could eventually be used as an outcome measure for clinical trials evaluating novel therapeutics aimed at limiting or preventing ARPKD kidney disease progression.


Assuntos
Rim/diagnóstico por imagem , Imageamento por Ressonância Magnética , Rim Policístico Autossômico Recessivo/diagnóstico por imagem , Adolescente , Animais , Modelos Animais de Doenças , Progressão da Doença , Humanos , Rim Policístico Autossômico Recessivo/genética , Valor Preditivo dos Testes
3.
Sci Rep ; 9(1): 19888, 2019 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-31882792

RESUMO

Synchronous assessment of multiple MRI contrast agents in a single scanning session would provide a new "multi-color" imaging capability similar to fluorescence imaging but with high spatiotemporal resolution and unlimited imaging depth. This multi-agent MRI technology would enable a whole new class of basic science and clinical MRI experiments that simultaneously explore multiple physiologic/molecular events in vivo. Unfortunately, conventional MRI acquisition techniques are only capable of detecting and quantifying one paramagnetic MRI contrast agent at a time. Herein, the Dual Contrast - Magnetic Resonance Fingerprinting (DC-MRF) methodology was extended for in vivo application and evaluated by simultaneously and dynamically mapping the intra-tumoral concentration of two MRI contrast agents (Gd-BOPTA and Dy-DOTA-azide) in a mouse glioma model. Co-registered gadolinium and dysprosium concentration maps were generated with sub-millimeter spatial resolution and acquired dynamically with just over 2-minute temporal resolution. Mean tumor Gd and Dy concentration measurements from both single agent and dual agent DC-MRF studies demonstrated significant correlations with ex vivo mass spectrometry elemental analyses. This initial in vivo study demonstrates the potential for DC-MRF to provide a useful dual-agent MRI platform.


Assuntos
Meios de Contraste , Gadolínio , Glioma/diagnóstico por imagem , Imageamento por Ressonância Magnética , Meglumina/análogos & derivados , Neoplasias Experimentais/diagnóstico por imagem , Compostos Organometálicos , Animais , Linhagem Celular Tumoral , Meios de Contraste/química , Meios de Contraste/farmacologia , Feminino , Gadolínio/química , Gadolínio/farmacologia , Humanos , Meglumina/química , Meglumina/farmacologia , Camundongos , Camundongos Nus , Compostos Organometálicos/química , Compostos Organometálicos/farmacologia
5.
Magn Reson Med ; 80(6): 2681-2690, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29744935

RESUMO

PURPOSE: The goal of this study was to develop a fast MR fingerprinting (MRF) method for simultaneous T1 and T2 mapping in DCE-MRI studies in mice. METHODS: The MRF sequences based on balanced SSFP and fast imaging with steady-state precession were implemented and evaluated on a 7T preclinical scanner. The readout used a zeroth-moment-compensated variable-density spiral trajectory that fully sampled the entire k-space and the inner 10 × 10 k-space with 48 and 4 interleaves, respectively. In vitro and in vivo studies of mouse brain were performed to evaluate the accuracy of MRF measurements with both fully sampled and undersampled data. The application of MRF to dynamic T1 and T2 mapping in DCE-MRI studies were demonstrated in a mouse model of heterotopic glioblastoma using gadolinium-based and dysprosium-based contrast agents. RESULTS: The T1 and T2 measurements in phantom showed strong agreement between the MRF and the conventional methods. The MRF with spiral encoding allowed up to 8-fold undersampling without loss of measurement accuracy. This enabled simultaneous T1 and T2 mapping with 2-minute temporal resolution in DCE-MRI studies. CONCLUSION: Magnetic resonance fingerprinting provides the opportunity for dynamic quantification of contrast agent distribution in preclinical tumor models on high-field MRI scanners.


Assuntos
Meios de Contraste/química , Imageamento por Ressonância Magnética , Algoritmos , Animais , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Linhagem Celular Tumoral , Modelos Animais de Doenças , Disprósio/química , Gadolínio/química , Glioblastoma/diagnóstico por imagem , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Modelos Lineares , Camundongos , Camundongos Nus , Transplante de Neoplasias , Imagens de Fantasmas
6.
Pediatr Res ; 83(5): 1067-1074, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29538364

RESUMO

BackgroundAutosomal recessive polycystic kidney disease (ARPKD) is associated with significant mortality and morbidity, and currently, there are no disease-specific treatments available for ARPKD patients. One major limitation in establishing new therapies for ARPKD is a lack of sensitive measures of kidney disease progression. Magnetic resonance imaging (MRI) can provide multiple quantitative assessments of the disease.MethodsWe applied quantitative image analysis of high-resolution (noncontrast) T2-weighted MRI techniques to study cystic kidney disease progression and response to therapy in the PCK rat model of ARPKD.ResultsSerial imaging over a 2-month period demonstrated that renal cystic burden (RCB, %)=[total cyst volume (TCV)/total kidney volume (TKV) × 100], TCV, and, to a lesser extent, TKV detected cystic kidney disease progression, as well as the therapeutic effect of octreotide, a clinically available medication shown previously to slow both kidney and liver disease progression in this model. All three MRI measures correlated significantly with histologic measures of renal cystic area, although the correlation of RCB and TCV was stronger than that of TKV.ConclusionThese preclinical MRI results provide a basis for applying these quantitative MRI techniques in clinical studies, to stage and measure progression in human ARPKD kidney disease.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética , Rim Policístico Autossômico Recessivo/diagnóstico por imagem , Animais , Cistos/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Hepatopatias/patologia , Masculino , Octreotida/farmacologia , Rim Policístico Autossômico Recessivo/patologia , Ratos , Ratos Sprague-Dawley , Software
7.
Magn Reson Med ; 79(4): 2176-2182, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28796368

RESUMO

PURPOSE: The regularly incremented phase encoding-magnetic resonance fingerprinting (RIPE-MRF) method is introduced to limit the sensitivity of preclinical MRF assessments to pulsatile and respiratory motion artifacts. METHODS: As compared to previously reported standard Cartesian-MRF methods (SC-MRF), the proposed RIPE-MRF method uses a modified Cartesian trajectory that varies the acquired phase-encoding line within each dynamic MRF dataset. Phantoms and mice were scanned without gating or triggering on a 7T preclinical MRI scanner using the RIPE-MRF and SC-MRF methods. In vitro phantom longitudinal relaxation time (T1 ) and transverse relaxation time (T2 ) measurements, as well as in vivo liver assessments of artifact-to-noise ratio (ANR) and MRF-based T1 and T2 mean and standard deviation, were compared between the two methods (n = 5). RESULTS: RIPE-MRF showed significant ANR reductions in regions of pulsatility (P < 0.005) and respiratory motion (P < 0.0005). RIPE-MRF also exhibited improved precision in T1 and T2 measurements in comparison to the SC-MRF method (P < 0.05). The RIPE-MRF and SC-MRF methods displayed similar mean T1 and T2 estimates (difference in mean values < 10%). CONCLUSION: These results show that the RIPE-MRF method can provide effective motion artifact suppression with minimal impact on T1 and T2 accuracy for in vivo small animal MRI studies. Magn Reson Med 79:2176-2182, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Assuntos
Artefatos , Processamento de Imagem Assistida por Computador/métodos , Fígado/diagnóstico por imagem , Imageamento por Ressonância Magnética , Imagens de Fantasmas , Algoritmos , Anestesia , Animais , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Movimento (Física) , Reconhecimento Automatizado de Padrão , Reprodutibilidade dos Testes
8.
Sci Rep ; 7(1): 8431, 2017 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-28814732

RESUMO

Injectable Magnetic Resonance Imaging (MRI) contrast agents have been widely used to provide critical assessments of disease for both clinical and basic science imaging research studies. The scope of available MRI contrast agents has expanded over the years with the emergence of molecular imaging contrast agents specifically targeted to biological markers. Unfortunately, synergistic application of more than a single molecular contrast agent has been limited by MRI's ability to only dynamically measure a single agent at a time. In this study, a new Dual Contrast - Magnetic Resonance Fingerprinting (DC - MRF) methodology is described that can detect and independently quantify the local concentration of multiple MRI contrast agents following simultaneous administration. This "multi-color" MRI methodology provides the opportunity to monitor multiple molecular species simultaneously and provides a practical, quantitative imaging framework for the eventual clinical translation of molecular imaging contrast agents.


Assuntos
Meios de Contraste/administração & dosagem , Meios de Contraste/análise , Imageamento por Ressonância Magnética/métodos , Gadolínio/administração & dosagem , Gadolínio/análise , Humanos , Processamento de Imagem Assistida por Computador/métodos , Manganês/administração & dosagem , Manganês/análise , Modelos Teóricos , Imagens de Fantasmas , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...